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PREFACE 

Accumulating evidence indicates that the scattering 
and absorption of sound by small gas bubbles in water can con- 
stitute a serious difficulty in echo ranging or in listening. 
Work in connection with both the Wake and Reverberation Pro- 
grams indicates that a study of the acoustic properties of 
small bubbles is necessary for a complete understanding of 
the transmission of sound in sea water. In addition, air 
bubbles are apparently the most efficient absorbers of under- 
water sound and are, therefore, of interest in all cases where 
an avsorbing sound screen would be useful. 

A considerable amount of research has been done on 
this subject, but the results have not hitherto been available 
in a simple comprehensive form. The present report, which is 
intended primarily for the use of research workers in under- 
water acoustics, attempts to summarize and bring together in 
one place all relevant information on the acoustic properties 
of gas bubbles. 

The final results, which make possible in certain 
cases a prediction of the reflection, scattering, and absorp- 
tion to be expected from a given distribution of bubbles, are 
summarized in the first few pages of the report. "For many 
practical purposes a reading of this Summary will be sufficient. 
The remainder of the report, which may be regarded as an appendix, 
will be of interest to those concerned with the derivation and 
observational verification of the formulae given in the Summary. 
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Small gas bubbles in a liquid can be Tery effective 

scatterers and absorbers of sound, owing to the possibility of 

resonance between the sound field and the natural oscillations 

of the bubble» The radius R at which a bubble resonates to 
T 

sound of frequency 3/ is given by the equation 

P is the hydrostatic pressure, ^  is the density of the liquid, 

and y  is the ratio of specific heats of the gas in the bubbles; 

0/. is a quantity which increases from 1 to y as R decreases, 

corresponding to the transition from adiabatic to isothermal 

conditions within the bubble „ The value of ot is given from 

theory in terms of the density, specific heat, and heat con- 

ductivity of the gas, - see Section II. The quantity g is a 

correction factor which takes surface tension into account, and 

is given by the equation 

.-'♦*.{-$) 
where T is the surface tension of the liquid-gas interface,. 

For an air bubble in water, y is 1.4, P  is 1,0, and 

the equation for R may be put in the more convenient form 
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V->-Se8r V-V- 
where now the pressure is In atmospheres.    Tills equation has 

been verified observationally within a few percent from 2 kc 

up to 30 kc, in which range both g and <* are essentially unity. 

Values of IL for different • and PQ are given in the accompany- 

ing Table. 

TABLE I. 

Resonant Radius for Air Bubble In Water 

rTkT 50 kc 5Ö0 kc Frequency! 1 kc 

.065 can 

.093 

.15 

.21 

20 kc 

«016  3ra 

.023 

.037 

.052 

,0063 cm 

.0091 

.015 

.021 

.00062 cm 

.00093 

.0015 

.0022 

Pressure 1 
in 

Atmospheres 2 
and 

Correspond- 5 
ing Depth 
of Water 1    10 

surface 

35 ft, 

140 ft. 

300 ft. 

,33 cm 

A7 

.73 

1.04 

The scattering and absorption produced by a single 

bubble may conveniently be expressed in terms of scattering and 

absorption "cross-sections". The scattering cross-section <r  is 
s 

defined so that the total energy of the scattered radiation is 

just equal to the amount of incident energy passing through an 

area <r& placed perpendicular to the beam. Similarly the total 

energy absorbed may be represented by an absorption cross-section 

er such that the total Incident sound energy passing through an 

area o^ per second is Just equal to the energy absorbed per sec- 

ond by the bubble. The sum of «r and <£ is called the extinction 

cross-section and is denoted by a ; it represents the total energy 
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removed from the beam through scattering plus absorption» 

The theory shows that for sound of frequency p* 

Incident upon a bubble of radius R 

°s = __4fi£_ _. , 

er = Jä£2& *- » 
\^v /:'   - l) + -5 

where 2/  is the resonant frequency for the bubble. The quantity 

S  Is called a "damping constant", and is the sum of three terms» 

representing the damping effects of radiation, viscosity and heat 

conduction; a is the contribution of radiation damping to 3", and 

at resonance is equal to 

a =/Mo£ = 1.36 x 10-2 l& 

if y, P , and the sound velocity c are taken for air bubbles in 

water at a pressure of one atmosphere«. 

The theory indicates that the effect of viscosity 

may be neglected for bubbles greater than 3 x 10  cm In radius, 

corresponding to frequencies of resonance less than a megacycle» 

The theoretical determination of 5 is not to be trusted, however, 

since the available observations show values of 3 of about 0.27 

for resonant bubbles at 24 kc, as compared with a theoretical 

value of 0.08. 
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When many bubbles ace present, ths absorption and 

scattering remove energy from the incident beam, giving rise 

to an attenuation which may bs expressed as K db per yard* 

The attenuation of the sound beam which results from scatter- 

ing alone may be expressed as K db per yard. The difference 
5 

between K and K„ is YL , that par.; of the total attenuation 

which arises fron absorption alone. If an integration is 

carried out only over bubbles very near resonance, 

K = IsiLgJ^L "v db/yard, 

K, = 5.2 x 10 ^ ur db/yard, 

whore the resonant radius R is in centimeters. The quantity 

u is the volume of air occupied by resonant bubbles per cubic 

centimeter per unit interval of logeR„ If the relative volume 

occupied by bubbles of different sizes does not change rapidly 

with R, then IL, IS roughly the volume of all bubb-.es in a cubic 

centimeter with radii between R_,/2 and 3^/2. Since R is much 

less than a millimeter in the cases of practical interest, K 

is much greater than K_, This corresponds to the fact that res- 

onant bubbles at supersonic frequencies absorb considerably more 

energy than they scatter. 

The quantity K , which represents the total attenua- 

tion of the initial beam in db pe? yard, may be observed directly. 
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The value of K given In the above formula is independent 

of the damping constant $ and should give a reliable deter- 

mination of the contribution which resonant bubbles make to 

the total attenuation. The numerical value of K given, however, s 

depends on the observed values of F at resonance and is valid 

only for values of R less than 0,1 cm. The value obtained is 

independent of frequency but may be expected to be different at 

pressures other than one atmosphere. 

Since K represents the energy removed from the main 

beam by scattering, its value may be used to determine the 

amount of radiation scattered. If I is the intensity of the 

incident radiation, each bubble will scatter an amount of energy 

C-I per second, and the total enargy scattered from a unit vol- 

ume will be not I, where n is the number of bubbles per unit vol- 

ume. The San Diego group has denoted nc3 by the symbol m. In 

the present notation 

loga10 *      T 
m = K_ ■ »<> ... sx 1.2 x ioV yard"1. 3  10 r 

The total energy scattered from a cubic yard will be ml, provided 

that K is less than 1 db so that I is uniform throughout the vol- 

ume in question. This scattered sound will be of equal intensity 

in all directions. 

When the scattering is being computed from a large vol- 

ume, or when Kg is very great, the Incident intensity I is differ- 
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ent In different regions, multiple scattering becomes important, 

and the computation of the scattered radiation is more compli- 

cated. If the attenuation K is much greater than K , however, 

the scattered radiation may be computed. For a layer of thick- 

ness X in which Kg and K0 are constant, and in which the total 

attenuation KgX is large, almost all of the incident energy I 

will be either scattered or absorbed. A fraction Kg/Kg will be 

scattered, but only half of this will be scattered backwards, 

and even this half will be partly absorbed on its way back out 

of the layer. The result is that the radiation scattered dir- 

ectly backwards out of the layer may be computed as though a 

fraction Kg/4Ke of the energy I were scattered in all backward 

directions, i.e., over a hemisphere. 

Bubbles other than those near resonance have a smaller 

acoustic effect than those near resonance, unless the number of 

resonant bubbles is relatively very small. Under some circum- 

stances, bubbles above resonance may contribute to the scattering, 

while those below resonance may be important in absorbing sound. 

For bubbles whose radii are below resonance, but greater than 

0.1B , the total absorption will be 1/20 to 1/40 as great as that 

from the resonance peak if the total geometrical cross-section of 

all bubbles per radius interval per cnr is roughly constant for 

the entire range of bubble sizes. On the other hand, for micro- 

scopic bubbles, with a radius below 3 x 10""* cm, viscosity is 

important and Kg,the attenuation at 24 kc, in db per yard, is 
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K. = 1.8 x 104 -ML db/yard j 

? 
u is the total volume of such bubbles per cm3, and g is the 

harmonic mean square of g, the surface tension correcting factor, 

averaged over the volume of bubbles per radius interval« For 

other frequencies XL varies as ir-,    Since g is greater than unity 

in this range, the attenuation produced by microscopic bubbles is 

very much less than that produced by the same volume of air in the 

form of resonant bubbles. 

When many bubbles are present, specular reflection of 

sound may occur from a region in which the density of bubbles 

changes rapidly over distances small compared to the wave length, 

provided that on each side of the region the bubble density is 

uniform. The presence of bubbles changes the velocity of sound) 

the real and imaginary parts both combine to give a reflection 

coefficient r. When the bubble sizes are distributed about res- 

onance, the change in the real part of the velocity is very small, 

but the imaginary part is appreciable. For a ray of sound in 

bubble-free water, incident normally on a plane surface, beyond 

which extends a region of uniform bubble density, the reflection 

coefficient is 

Ä A * /*"+ te^xioV)2 - yr 
r ■ 

where Up, defined in the same way as before, gives the density of 

bubbles in the region from which the sound is reflected. It is 
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evident that when u^ changes from less than 10~? to more than 

10  at a sharp discontinuity, most of the incident sound will 

be reflected even though for each bubble the scattering cross- 

section crm  is much less than the absorption cross-section Ol. s a 
Bubbles of sizes far from resonance may also contri- 

bute to the reflection of sound in some situations. The relevant 

formulae are discussed in Sections IV and V. 

It should be noted that all numerical statements and 

formulae in this Summary refer to air bubbles in water; also, 

except in Table I, a hydrostatic pressure of one atmosphere has 

been assumed in all cases. In other situations the more general 

equations derived in the following paper must be used. 
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1 
INTRODUCTION 

Air bubbles in water scatter and absorb underwater 

sound to a rauch greater extent than their geometrical radii 

might indicate. This effect arises from the fact that a small 

bubble resonates to sound whose wave length is several hundred 

times the diameter of the bubble. The scattering cross-section 

at resonance is several hundred times as great as the actual 

geometrical cross-section of the bubble. Since, in addition, a 

resonant bubble has a large amplitude of oscillation and dissi- 

pates a considerable amount of energy, the absorption cross- 

section of a bubble will be in many cases comparable to or 

greater than the scattering cross-section., 

It is for this reason that bubbles have a considerable 

Importance in the transmission of underwater sound. Even a very 

few bubbles, so widely scattered as to be almost invisible, may 

have an appreciable acoustic effect, and if the number of small 

bubbles is high, so that their presence is readily visible, the 

water will in many cases be very nearly opaque acoustically. 

It may be useful to have assembled in one report all 

the present available detailed information on the acoustic prop- 

erties of such bubbles. Calculations of the scattering and ab- 

sorption to be expected have been carried out by several authors, 

including German, Japanese, English, and American scientists. In 

addition, observational data on this subject make possible an 

evaluation of the theoretical predictions. While there is still 
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some uncertainty concerning the exact values of the scattering 

and absorption to be expected in certain cases, and while addi- 

tional observational evidence would be highly desirable, on the 

whole the theory summarized in this report should provide a 

reasonably accurate guide for the effects to be expected in the 

most important cases, 

In the first section of the report, a detailed analysis 

is given of the scattering to be expected from a small bubble of 

gas in which there is no ^conduction of heat, surrounded by a 

fluid in which the viscosity is zero, and at the surface of which 

there is no surface tension. This analysis, which is fairly 

simple, is given in detail to illustrate the principles involved. 

In the second section this analysis is extended to include the 

effects of viscosity in the water as well as the effects of heat 

conduction and surface tension. The experimental data on the 

oscillations of a bubble in the sound field are presented in 

Section III. 

The scattering, absorption, and reflection to be ex- 

pected from many bubbles of the same size are analyzed in the 

fourth section of this report. In the following section, the 

effects produced by many bubbles of different sizes are also 

considered, and the absorption, scattering, and reflection shown 

to arise primarily from bubbles near resonance. The results of 

this last section will be the ones applicable in most practical 

situations. 
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I, SCATTERING OF SOUND BY A SINGLE IDEALIZED BUBBLE. 

The scattering of sound from a small bubble in a 

liquid can be treated in one of several ways. The most general 

and the most elegant treatment is that which has been used in 

atomic and nuclear collision theory, and which Epstein has em- 

ployed in his discussion of the effect of viscosity on the 

scattering and absorption by small spheres. In this method, 

the velocity potential for the incident wave is expanded in a 

series of terms, each of which represents a standing wave in 

spherical coordinates, v/hose origin is at the center of the 

bubble. If the equation for the oscillation of the bubble is 

solved in spherical coordinates, the solution turns out to be 

another series of such terms,. From a comparison of these two 

series and a consideration of the appropriate boundary conditions, 

both the scattered and the absorbed radiation may be determined. 

While this method has the advantage of generality, its meaning is 

not always physically clear, and the necessary analysis is more 

complicated than is required for the present purpose. 
* 

Since the radius of the bubble in all relevant cases 

is considerably less than the wave length of the incident sound, 

another method of analysis, which has been used by Willis*, is 

possible. In this method of analysis, the bubble is assumed to 

1. P, S. Epstein, Th. Yon Kanaan Anniversary Volume. 1941, p. 162. 

2. Willis. British Report, reprinted as Confidential Report Section 
C4-BrTs-503, Dissipation of Energy Due to Presence of Air Bubbles 
to foe SeaP 
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be In a uniform, but alternating pressure field, and the velocity 

associated with the incident wave is neglected. This approxima- 

tion is equivalent to replacing the incident wave by the first 

term in the expansion discussed ebove. This treatment is valid 

provided that the radius of the bubble is very small compared to 

the wave length X. 

The physical picture associated with this analysis is 

that the bubble cannot be in equilibrium with an oscillating 

pressure unless the bubble itself is pulsating. The magnitude 

of this oscillation, and the amount of radiation scattered, is 

determined by the boundary condition that the pressure and vel- 

ocity just outside the bubble must be the same as those just 

inside. To express these conditions in a more quantitative form« 

expressions must be introduced for the pressure and velocity both 

inside and outside the bubble. Let p represent the pressure in 

the incident sound wave, which in this approximation is taken to 

be a function of the time only, not of position. The dependence 

of p on time is given by the equation 

Po s Po'elUt "I t1"1* 

where &> is the angular frequency of the sound wave. In general, 

primed quantities will be used throughout to denote the value of 

a particular quantity when t is equal to zero. 

The pressure inside the bubble may be denoted by 
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P0 + p^, where PQ is the hydrostatic pressure. In general, 

constant pressures will be denoted by capital letters, while 

small letters will be used for oscillating pressures. To the 

same degree of approximation as before p, may be assumed to be 

the same at all points Inside the bubble at any one time,pro- 

vided that the wave length of the sound in air is much greater 

than the radius of the bubble. The oscillation of the bubble 

will produce an external velocity v , and an external pressure 

pe which must be added to PQ + pQ to give the total pressure in 

the liquid* Both ve and pQ will vary with r, the distance from 

the center of the bubble. 

In this notation the two boundary conditions, express- 

ing the equality of pressure and velocity en the two sides of the 

bubble surface, become 

P0 
+ PQ(R) - Pi  , (1-2) 

ve(B) = dR  , (1-3) 

where R is the radius of the bubble. In addition, v and pÄ are * e    e 

determined from a velocity potential ^ by the usual equations 

*„ = f£  , (1-4) 

Pe'-f^ . (1-5) 

For spherically symmetrical oscillations we have 

* = Ae
1^-1^ , (1-6) 
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yielding for ve and pe the expressions 

ve = =|(l+ikr)e
i(^t-kr) , (1-7) 

r 

P - =3eaa1(a't-kr)   , a-8) He   P 

where k is 2tfX and A is a constant; r is of course the distance 

from the center of the bubble. 

Since dR/dt may be expressed in terms of p. if the 

nature of the gas in the bubble is known, the boundary condi- 

tions (1-2) and (1-3) may be used to eliminate p and to deter- 

mine the constant A in equation (1-6). It is clear that this 

constant gives the intensity of the scattered radiation. Since 

the flow of energy H per square centimeter corresponding to a 

sound pressure p is 

H = 5- ' pc 

where c is the velocity of sound and where the bar denotes an 

average over time, it follows from equation (1-8) that the total 

flow of energy in the outgoing or scattered wave at a distance r 

14     ^\ .fix&tyJl   , (i.9) 

where |A{ denotes the absolute value of the complex quantity A, 

and H is the flow of energy per unit area in the scattered wave. 
s 

We shall let  T denote the "cross-section" of the bubble for s 
scattered radiation. In physical terms, the energy appearing in 
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the scattered radiation is equal to the amount of energy in the 

incident beam which passes through an area <r perpendicular to 
S 

the beam. In the present case, the energy in the incident beam 
2 passing through unit area is p' /2^c, and therefore 

,2 

^g- ■ **?\    , (1-10) • 

and with the use of equation (1-9), this gives 

%-^MM
2
   . (i-ii) 

Po 

We may also introduce a coefficient of extinction or, e' 
defined as the cross-section for extinction of the incident radia- 

tion. The extinction includes both scattering and absorption and 

may be determined from the total work done on the bubble by the 

incident sound wave. The work done by pQ on the bubble per unit 

time, per unit area may be expressed as the product of the real 

parts of p and of the velocity dR/dt of the bubble surface. 

Since p ' is real by definition, the average rate of work done 

on the bubble is 

W » ~4*R2po' cos«t4jCdR/dt)  ,       (1-12) 

where <f( denotes the real part of the following quantityr From 

equation (1-3) dR/dt equals ve(R); to the same approximation as 

before, we may write in equation (1-7) 

(l+ikR)e'ikR = 1,+ l^R2 . (1-13) 
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Since k2R2 is of the same order as terms already neglected, 

dR/dt becomes 

IB*** (1-14) - v (R) = 4€ 
e     p2 

and the real part of v (R) then becomes -fjA) cos*>t/R2, plus a 

term in sinüfc. If this value is substituted In equation (1-12) 

•we have 

W * 4itp0«H(A) cos2(»t) , (1-15) 

where the term in sinwt has been neglected, since its average 

value is zero. The intensity of the incident sound multiplied by 

the "extinction" cross-section eg, is equal to the total work done 

on the bubble. Hence as in equation (1-10) 

w = ^P°   • W   Ifc (1-16) 

2 
Since the average value of cos wt is 1/2, we have finally for j-, 

%  s *p*T^A) , (1-17) 
Po' 

Equations (1-11) and (1-17) are quite general, and may be applied 

in any case such that 2rR/X is much less than unity. 

It remains only to find the value of A. This may be 

done by the use of the two boundary conditions (1-2) and (1-3). 

First, however, we must express dR in terms of p.. This relation- 

ship follows from the assumed equation of state of the gas in the 

bubble. As before we may write 
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pi = V**** • (1-l8) 

If the conditions are assumed to be wholly adiabatic, that is if 

the conduction of heat from the bubble into the water is neglected, 

and if the amplitude of oscillation of the bubble is small, we 

have the equation 

dpi/PQ = -ydV/V , (1-19) 

where V is the volume of the gas in the bubble. If isothermal 

conditions are assumed, y must De omitted from equation (1-19)» 

The rate of change of V is obviously 

dV/dt = 4frR2dR/dt  , (1-20) 

where R is again the radius of ths bubble. Equation (1-18) may 

be differentiated to yield 

J^inp'e^1  . (1-21) 
# at     l 

Equation (1-19) may be written 

-i ^El - rJL dV      . (1-22) 
P0 dt    " T" dT 

If equations (1-20) and (1-21) are substituted in equation (1-22), 

we have 

ft.±2^.** . a.23, 

Since the volume V is given by 
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3 

equation (1-23) &ay be written in the form 

dR ... -k'Rpj  iut 
dt - 3y?0  * 

(1-24) 

(1-25) 

We may now write down the boundary conditions (1-2) and 

(1-3) in terms of pj* and Ac Using equation (1-1) for pQ, equa- 

tion (1-6) for pg,.j equation (1-18) for p., equation (1-14) for v 

and equation (l-?5) for diVcit, we. have 

o 
it*>A ~.lkR 
R  e (1-26) 

• 

~A 
Z2 

1U27) 

These two equations may be used to eliminate p„8 and to solve 

for A., which,  becomes 

„DA  5 B 

fWHEr 

If we define the  following quantities 

^2,li!o 

(1-28) 

(1-29) 

pR' 

and 

(1-30) 

and if we expand the exponential in equation (1-28)^, retaining 

a -  kR = 2^ 9 
A 



« 

mm     JLX mm 

only the first term, A becomes 

A = «i       ^  . (1-3D 
=s - 1 + la 
to* 

If equation (1-31) is used in expression (1-11) for <?, we find 
s 

which yields 

<5 = /»«^f • »   • a"33) 

The value of cr   found from equation (1-17) is identical with 
e 

that found for or , since in this ideal case there is no absorp- 

tion. 

Since k equals <p/c, equations (1-29) and (1-30) may be 

combined to give the result 

"o ° (1-34) 

where 

a -tm1*   ■ (1-3?) (Mai 

The quantity a is the value of a., or 2*RA > at resonance; for air 
sea ° 

bubbles in/water at atmospheric pressure at 60°Ff equation (1-35) 

yields 

aQ = 1.36 x 10~
2 f (1-36) 

calculated for a sound velocity of 1.49x10^cm/3ec. 
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Equation (1-33) is represented graphically In Figure 

1, where logcr/rtR* is plotted against a. The solid'line re- 

presents the adiabatic case, with y a 1«4; the dashed line re- 

presents the isothermal case, in which y is replaced "by unity. 

From equation (1-29) it Is evident that the resonant frequency 

is decreased by a factor of y^ when isothermal conditions re- 

place th« adiabatic ones. Since, moreover, cr is equal to 

4*R(6>/fcJi ) in the long-wave -length, or Rayleigh, region - see 

equation (1-33) - the scattering cross-section Is greater in the 
2 

isothermal case by a factor of y . The details of the transition 

between adiabatic and Isothermal conditions are contained in the 

results of the next section. Figure 1 is essentially the same 

as one given by Duvall. 

It is evident from Figure 1 that ol is enormously 

greater at resonance than it is elsewhere., From equations (1-30) 

and (1-33) it may be seen that the value of cr, at the resonant 

peak is X2/tr , corresponding to scattering of the energy Incident 

on a sphere of radius A/TC »    Since a is 2nR/X, it is evident from 

equation (1-36) that X is roughly 400 times the value of R at res- 

onance; the scattering of sound from an ideal bubble is in some 

circumstances enormously greater than would be expected from the 

geometrical cross-section of the bubble. It should be noted that 

# 

3. Memorandum For File - M40 - University of California, Division 
of War Research, Scattering of Underwater Sound bv Solid Particles 
and Air Bubbles, by George E. Duvall, February 11, 1943. 



FIGURE  I 
SCATTERING  CROSS SECTIONS 

FOR IDEAL   BUBBLES 

5.0 

45 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

-05 

-1.0 

-f.5 

-2.0 

-2.5 

-3.0 

 1 p    -" 
i 

1 

; 

;    "      (1 i 
i 
i 

   iL_. 

i 1 
l' 

i .   
i 

ISOTHE VMAL 
i \ 

! 

i ,'   \\ V—AÖJABATIÖ 
' \\            \   

1       \    \        ! 

r'    /  »   \       ' 

! 

r    ' ■  /    x   \ 
*   /      v  \ 
'          /                         N       \ 

/   / 
/ 

X. 

!                          i 

  

i 

/ 

— ..v. 

/          / 

.. 

i 

, 

* 

 /  

1 

i 

i 

—- — 

i        /    / 

  
—■ 

• 

X 

.001 .002      .003  .004      .006 .006 .01 ,02        .03   .04       .06 

/A£s 



- 13 - 

the radius at which a bubble resonates may also be deduced-' 

from relatively simple considerations, involving only the effect- 

ive mass of the water immediately surrounding the bubble and the 

stiffness of the air in the bubble. 

C 
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II»  SCATTERING AND ABSORPTION OF SPUND BY AN ACTUAL FUBPLE. 

The results of the previous section are valid only In 

the Ideal case, In which there is no dissipation of energy.  In 

an actual bubble oscillations will be accompanied by a loss of 

energy, partly through viscosity, and partly through the loss 

of heat from the bubble into the fluid. In addition, the presence 

of surface tension will modify the results. The boundary condi- 

tions in the preceding sections may readily be modified to take 

these effects into acco-unt. 

The presence of heat conduction modifies the equation 

of state so that dp,/P is no longer equal to -ydv/v. As pointed 

out in the last saction, when the conduction of heat is so com- 

plete that isothermal conditions prevail, dpj/P0 is equal to 

-dV/V. In the intermediate case, however, dpj/pQ is no longer 

in phase with -dv/V; it is this difference in phase that gives . 

rise to the dissipation of energy. 

This effect may be simply described in physical terms. 

As the bubble is compressed the temperature rises; when the rise 

of temperature is appreciable, heat conduction is important and 

the bubble tends to cool off even before expansion has started. 

When maximum compression is reached, the temperature will be de- 

creasing as heat flows from the bubble into the water. It is 

clear that the maximum temperature will be reached somewhat be- 

fore maximum compression, and that the temperature of the bubble 

*) 
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will tend to be so»««what greater during the compression than 

during the expansion  Since for a given volume the pressure 

varies directly as the temperature, the pressure exerted en the 

bubble during the compression will be greater for a given radius 

than the corresponding pressure -luring the expansion.  Hence the 

work done by the compression of the bubble will be less than the 

work done by the bubble when it expands-.  The difference repre- 

sents a dissipation of energy, which aopears as a net flow of 

heat into the water. 

The analysis for this case has teen carried through by 

2 
Willis .  The results .-show that 

V     Y   Pi" 

where pj is the average pressure of the gas In the bubble; 

(2-1) 

cij SO 

*   -   i  +   5fy -1.) (sir'!' X '   alnK' 
K        cosh K -  cos «) 

(2-2) 

(2-3) 

where 

,,/ L  

whi Lu   rip   Jiii.j   K 

pressure   anJ   hi 

are   lndeponden' 

p.     i :~.    : h'     M -"v.. ' t y   .n'    id-     -": s    ,v ; v   ' , ■    * ! 

bn '    ?   ..'■• ' :" -    hea',   per   < i: 1. i    .ve 1 gh;    •> ■ 

LO.ii",     onduct i vi ty   !'o."   the   </as.      Sirve   i: 

it-nslty,  ^    varies   directly  as   (>* .   or ■i s 
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if <*> and R are constant« If <J is constant, while R satisfies 

equation (1-29) for a resonant bubble, Xr varies as P.2. Results 

similar to those of Willis were found independently by Pfriem 

and Saneyosi*. Certain of the assumptions made by Willis and 

others have been examined critically by Herring", who finds that 

they are valid in the cases of practical importance. 

When ft is equal to or less than 2, «. and ß are given 

to within one percent by the expansions 

while for K  equal to or greater than 5 we have, to the same 

accuracy, 

*. = 1 + 3QM-? , (2-7; 

Values of «. and. ß for a wide range of K are shown in Figure 2, 

taken from Herring's paper . As expected, oc increases from 1 

to X as R decreases, while ß , which gives the dissipation arising 

from heat conduction, has its maximum value in the transition re- 

gion and vanishes for both very large (adiabatic) and very small 

(isothermal) bubbles. 

4. H. Pfriem, Akustische Zeltschrift. 5, 202, 1940. 
5. Z. Saneyosi, Electrotechnical Journal. 5? p. 49, 1941. 
6p C. Herring, Comments on the Report "Dissipation of Energy 

due to Presence of Air Bubbles in the Sea." by Willis. 
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The presence of viscosity in the surrounding fluid 

also produces a difference of phase between the pressure and the 

velocity at the surface of the bubble, with the result that more 

energy is required to compress the bubble than is regained in 
7 

the subsequent expansion.' In the presence of viscosity, momen- 

tum is transmitted from one region of a fluid to another moving 

at a different velocity; an element of fluid moving rapidly in 

a particular direction tends to transmit its momentum to other 

elements of the fluid. In the present case, the effect of vis- 

cosity is perhaps difficult to visualize, since the viscous 

forces are approximately zero both inside and outside the bubble. 

The viscous stresses, which give the flow of momentum in different 

directions, do not vanish in the liquid outside the bubble, how- 

ever. The point is that although momentum is flowing through 

the liquid, each small element receives as much as it loses, so 

that there is no net force on any small element of the liquid. 

At the surface of the bubble, however, the presence of 

viscosity in the liquid will produce a flow of momentum across 

the surface into the gas, and this flow will not in general be 

equal to the corresponding flow in the reverse direction. This 

flow must be counterbalanced by an equal but opposite difference 

between p. and p + pÄ, from which the dissipation of energy may 
r 1    o   e 

7. An evaluation of the viscous damping of air bubbles in water 
was given by A. Mallock, Proc. Roy. Soc. A. 84. p. 391, 1910. 
His formula for the dissipation of energy is apparently in error 
and should be multiplied by a factor of 4tr/3. 
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be calculated. 

More quantitatively, In cartesian coordinates the 

stress tensor pgt, which is the flow in the s direction of 
o 

momentum in the t direction may be written 

ft'-fr-t^iSteM!**^). (2-9) 

where p is the total pressure and where s and t may each assume 

the values 1, 2, and 3> corresponding to the x, y, and z axes, 

respectively; also 

X    - (1 if s Z  * ♦ (2-10) oBt - \0  if s * t . 

In the present case the velocity is wholly radial and it is only 

the flow of radial momentum across the surface that is important; 

this quantity may be denoted by the symbol Q. Equation (2-9) 

then becomes 

Q = -p - Zj*. JL (r2v) + 2fJz    .   (2-11). 
3r2 jr       Tit 

s 

Inside the bubble, the coefficient of viscosity/A. may 

be written yu,.. If the temperature is assumed to be uniform, the 

bubble expands uniformly, and 

Tl'ift  - <2-12> 

8. Lamb, Hydrodynamics (Cambridge U. Press, 1932), p, ?74. 
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With this substitution we find that Q is equal to -T> inside the 

bubble, corresponding to the usual assumption that viscous effects 

vanish for uniform expansion or contraction of a fluid. If P. 

denotes the average pressure inside the bubble, then 

Qi = "' Pi - pi • (2~13) 

Outside the bubble i we may take equation (1-14) for v and sinct 

the total pressure p outside the bubble is the sum of the hydro- 

static pressure PQ, the incident sound pressure pQ, and the 

scattered sound pressure p , Qe becomes 

. h   int 
Q  =>TJ  „T,  »-n  + _1J fa. (2-14) s8     o  po  H©      ^ 

rJ 

At the surface of the bubble Q. and Q would be equal 

except for the presence of surface tension, which contributes a 

term -2T/R to be added to Q , where T is the surface tension per 

cm at the liq\iid-gas interface. The boundary condition (1-2) now 

becomes 

pi + n = po + Po + pe(
R) + S ~ **iT^ •     (2-15) 

R 

where the subscript e has been dropped from the coefficient of vis- 

cosity for the liquid. 

When equation (2-15) is averaged over time, there results 

the familiar equation 

PjL = P0 + 2T/B , (2-16) 
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expressing the fact that tha surface tension Increases the 

average pressure within the buoble. The time-dependent quan- 

tities in equation (2-15) yield the relationship 

Pi1'= p0' + v(R>+ ll~ ^-r^ - ^4 i      «-w 10 3RPi    Y      R3 

where equation (2-1) has been used to determine dR/dt in terms 

of pj,as in equations (1-19) through (1-2?)., and thus to determine 

'.j the time-dependent part of 1/R, 

In equation (2-17) we may now use equation (1-8) to 

S eliminate pe'(R), and equations (1-3), (1-14), (1-18), (1-20), 

and (2-1) to eliminate p.', and solve for A, Since Q     IS always 
1 2 ? Hi       less than 2 percent ofot , we may neglect (@M)~  as eomnared to 

unity," in which case A may be written in the f 

IRp !/f>cj 

orm 

L'r     - 1 
+ l'J 

U>2 

The resonant angular frequency Co is given by 

or 

U2  „Salil + a (1 - JL)(  , (2-19) 

U>2   = <J2 £ 

9, If (ß/«0 is not neglected, the resonant peak occurs whan 
(tJ/H») equals o(/(e»l + 0*) if surface tension effects are neglected. 
The contribution of heat conduction to the damping term s  at reso: 
ance is accurately/a/ot . however, as in equation (2-22)  In the 
paper by Pfriem (raf, 4), Figures 2  and 3 give values of ß/W and 
«/(**+p*) as functions of ){. 
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where u>   and«*, are defined In equations (1-29) and (2-2), res- 
o 

pectively, and where 

(2-21) 

•■1*ft(1-*) 

When the surface tension T is negligible, g is equal to unityc 

The "damping constant" 8  is given by 

where a equals kR, or 2**/), , as before. Since 5" is of primary 

importance near resonance, we shall be interested primarily in 

J  , its value at resonance; from equations (2-20), (1-29)» and 
r 

(2-21), we find . 

t . Ji-Ä ♦ ± ♦ 5o£2        , (2-23) 
r      3YPo*     «h        oe1/2 

where 

h « 1 -   &&X . (2-24) 
T + RPTTZF o' 

The quantity   ST is the relative half-width of the resonance peak 

obtained when either   o-    or    <r   is plotted against the frequency i/\ s    e 

i.e., - SJZ  is the value of (7^- Vjl/iL  at which öl and el are 

each equal to one-half their peak values. 

The scattering and extinction cross-sections may be 

found from equation (2-18) for A and from equations (1-11) and 

(1-17)} we find 

~f T-4   • <2-2?) 
•w»   /H.   \2   2 

& -)! 
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<\ 
Ttft* (# - ^ sl 

SJL. -- l3/o>  (2-26) 

"Ri    (j£-l)**  cF< 

It is also convenient  to define an absorption cross-section, o* , 

which is the difference between the extinction cross-section <r . e 
and the scattering cross-section, o* .,  From equations (2-25), 

(2-26), and (2-22), it follows that 

(2-27) 

It may be shown that the first term in the numerator gives the 
p 

sane result as was found by Willis, while the second gives that 

deduced by Epstein,i0 orcvided that, surface tension is negligible 

so that both g and h may be set equal to unity,, 

These- results may be illustrated by the specific case 

of an air bubble in water at a pressure of one atmosphere, for 

which the following constants may be useds 

P0 = J0
6djnes t Y 

= 1*40 i     ? '-  2 SSL.    s 

can cm 

K ~ 5,6xKf^cal   ,   c - 0.24 cal   p = 1.29x10"^ fiB 
cm sec ' gm >  * \   ' cm-' 

/A» a l,0xl0'"2 poise ,   T = 75 dynes 
cm 

10,    P, S    Epstein.    The Stability of Air Bubbles in the SeaT  and 
the Effect of Bubbles and Particles on the Extinction of Sound and 
Light in Cea Water,     NDRC Report No.  C4-sflö-027, September 1,  1941 
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I 

With these  values, fv ,  g,  and h b con 

where 

g -1 ♦ (i - ,3)4 , 

B=4,6x 10"4V(kc)  , 

and V(kc) is the frequency in kilocycles. The contribution of 

viscosity to d  - equation (2-23)  - becomes 

4>,CC(°r ="- 6,0 x 1CT5«*/ (kc)' 
3rPQg I r 

The computations based on these values have been used 

to plot Figures 3-5*  In Figure 3 are shown valuesAd for differ- 

ent resonant frequencies, for an air bubble in water at. atmos- 

pheric pressure,. Since the extinction is proportional at resonance 

to w , it is useful to split 3   ut> into three parts, corresponding 

to the three terms in equation (2-23), each giving the extinction 

arising from a particular source. The three dashed curves represent 

the different terms in equation (2-23), while their sum, shown by 

the solid curve, represents the total value of $ .     When the hydro- 

static pressure P is increased, the radiation damping increases 

1/2 as P   , the viscous damping is inversely proportional to P , for 

a fixed resonant frequency, while the heat-conduction damping at 

resonance reaches the same maximum value but at a frequency which 
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2 
varies as P - For a bubble at 300 feet., corresponding to a 

o 
pressure of 10 atmospheres, the damping constant S   will be 

practically equal to .043, the value arising from radiation 

damping, for frequencies less than 100 kcs 

It is evident that the effect of viscosity is quite 

negligible for resonant bubbles at frequencies much less than 

1000 kc At higher pressures the effect of viscosity is even 

smaller. 
o 

Figure 4 shows values of log sr/irR as a function of 

<Vu> for sound frequencies of 6000, 24,000, 200,000 and 5*000,000 

cycles per second, and for a hydrostatic pressure P of one atmos- 

phere. The increasing width and decreasing height of the reson- 

ance peaks as the frequency is increased is a result of the in- 

crease of S_ with frequency; the shift of the resonance peak to 

lower values of u)/o   and the increase of c   for low values of o s 

v/oi    as the frequency is increased results from the change in o< 
o 

depicted in Figure 2, and is a result of the transition from 

adiabatic to isothermal conditions. For the highest frequency, 

the effect of surface tension becomes important in increasing the 

stiffness of the bubble, and the resonant angular frequency u> 

becomes considerably greater than u  . 

In Figure 5 are plotted values of the logarithm of the 

absorption cross-section <r , divided by the geometrical cross- 
2 

section vR , again as a function of ,->/->0 and for a pressure of 

one atmosphere.. Near resonance, the curves are again determined 
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FIGURE   5 
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by the values of J , shown in Figure 3* as <3" increases, the 

absorption cross-section at resonance actually decreases, but the 

resonance peak becomes correspondingly wider. 

Far from resonance the value of $  for other values of 

the frequency becomes important. The absorption is of course 

the sum of two effects, arising from heat conduction and vis- 

cosity, respectively, corresponding to the two terms in equation 

(2-27). For bubbles very much smaller than the resonant size, or 

for frequencies of several hundred kc or more, K will be less 

than 2, equation (2-6) may be used for p and the ratio of these 

two terms becomes a function of the bubble radius R only, inde- 

pendent of the frequency. For an air bubble in water at a pressure 

of one atmosphere, the two terms are equal, and the absorption due 

to viscosity equals that due to heat conduction when R equals 

3x10 cm, corresponding to a resonant frequency of ICH kc, or one 

—4 megacycle. For bubbles greater than 3x10 cm in radius viscosity 

will be negligible compared to heat conduction, unless the bubble 

is so much larger than the resonant size that ß again becomes very 

small* The absorption produced by such laige bubbles is usually 

much less than the scattering (see Figures 4 and ?) and is not 

generally important. 

The results derived in this Section.are based on two 

fundamental assumptions, - firstly, that 2nB/-\, the ratio of the 

bubble circumference to the wave length of sound is less than 

unity; secondly, that AV/V, the relative change of volume of the 
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bubble, is small., The first condition restricts the analysis 

to relatively small bubbles. The chief interest lies in bubbles 

of resonant size or less, and since the radius of a bubble which 

resonates to sound of a particular frequency is much less than 

the wave length of the sound, this restriction is not serious. 

The second condition places a restriction on the intensity of the 

incident sound.. 

To examine this restriction quantitatively it is 

necessary to derive a value for AV  /V where AV   denotes the " max max 
maximum value of AV in the course of the pulsation.  If p.' is 

found from equation (2-17), substituting equations (2-18) for A 

and (1-8) for p J(R), then equation (2-1) yields, after some 

simplification, and with the neglect of surface tension, 

max _ P0 _*      1    •        (2-28) 
V  " K    Y F -SRT 

In deriving this equation (p/x)2 has been neglected compared to 

unity, and 5 u> /u) ' has been set equal to a      in the denominator, 
r r 

since this term is important only near resonance. 

From equation (2-28) it follows that when CJ is much less 

than c3 - that is, in the long-wave-length, or Rayleigh region, - 

A Vmax/V is small if the sound pressure p 
3 is much less than the 

hydrostatic pressure P . This is approximately the same condition 

that the sound-wave pressure be less than the cavitation limit. 

When u) is much greater than w> • the sound pressure p ■ can be as 
* o 
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great as P without making AV  /V as great as unity. 
o max 
At resonance, however, AV  /V is equal to or greater 

max 
than one, according to equation (2-28), when p VPQ is roughly 

■ 

equal to or less than the damping constant <5"r. From Figure 3 

the value of <Y at 20 kc is about „08. As will be shown in the 

next Section, the observed value of S    at this frequency is 

about «20. In either case, the relative change of volume is no 

longer small when the maximum incident sound pressure p ' is 

one-tenth of the hydrostatic pressure P . When p ' equals 

*•       .      P the sound intensity is approximately 190 db above the refer- 
2 

ence level of ,,0002 dynes/cm .. Hence the theory developed here 

^i        cannot be applied for resonant bubbles in a sound field above 

170 db. At lower frequencies this limiting intensity becomes 

even less, owing to the decrease of <5"„ with decreasing frequency. 

Such intense sound fields are found only in the close neighborhood 

of sound projectors. 

For resonant bubbles close to a powerful sound pro- 

jector A V  /V computed from equation (2-28) becomes large 

compared to unity and the phenomenon becomes quite different. 

In particular the oscillations are no longer purely harmonic, 

and begin to resemble those of a gas bubble produced by an ex- 

plosion.   The scattered radiation will tend to be generated 

11.  Theory of Pulsations of the Gas Bubble Produced by an Under- 
water Explosion, by C. Herring, NDRC Report No. C4-sr20-010, 
dated October 194-1. 
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when the "bubble is at its minimum diameter and will be 

composed of much higher frequencies than the incident sound 

wave, resembling a series of shock waves rather than a sinus- 

oidal pressure wave. The theory of this phenomenon would 

presumably be quite different from that which has been devel- 

oped in this paper. 

* 



III. EXPERIMENTAL DATA ON THE OSCILLATION 0? A SINGLE BUBBLE. 

Some observations have been made on the oscillations 

of single bubbles in a sound field„ The theory in Section II 

may be used to predict V ,the frequency at which a bubble res- 

onates, and also 8 f  the relative half-width of the resonance 

peak found when the square of the amplitude of oscillation is 

plotted against frequency. Experimental values of these two 

quantities may, therefore, be used to check the validity of the 

theory. 

The first examination of resonant bubbles was that of 
v 12 

Minnaert,  who derived equation (1-29) and confirmed its accur- 
v 

acy for bubbles with diameters between 3 and 6 mm«, The bubbles, 

^*       when formed individually in a pail of water, produced musical 

tones with frequencies of 1000 to 2000 cycles per second. The 

pitch was determined by ear to within a fraction of half a tone, 

using as a comparison standard a tuning fork with a frequency of 

I 264- cycles per second. The mean error of this comparison was 

t estimated to be a fifth of a tone. The volume of each bubble 

was determined with a gas pipette. 

Measurements with bubbles of different sizes in liquids 

of different densities confirmed accurately the theoretical rela- 

tionship« As predicted, changes of temperature had no effect, 

while changes of the type of gas in the bubble affected the pitch 

only if Y» the ratio of the-specific heats was changed. If the 

factor gA is set equal to unity in equation (2-20), and the 

12. II. Mlimaert, Phil. Mat. I6f 235, 1933. 
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value of oJ is found from equation (..-29), with y equal to 
o 

1.40, the resonant frequency zJ    in cycles per second may be 
r 

expressed by the simple relationship 

T/ . 32£ / Po(atm)>)1/2    , (3-D 
r      R   ^      P     ) 

where R is the radius of the bubble in cm and the pressure P 

is expressed in atmospheres. For various gases with y equal to 

1.40, the weighted mean of all 64 observations gave a value of 

330 for the constant in this equation. The agreement between 

theory and observation is excellent, 

A later theoretical paper by Smith1^ discusses the 

effects of surface tension. Smith also points out that the 

amplitude of oscillation at resonance is so great that other 

sources of damping are probably important. The probable des- 

tructive effect of small resonant bubbles on any solid matter 

nearby is also briefly discussed« 
14 

Meyer and Tamm's  quantitative work at supersonic 

frequencies not only provides further confirmation of equation 

(3-1) for the resonant frequency, but also evaluates the damp- 

13. F. D. Smith, Phil,. Mae. 19, 1148, 1935. Smith's equation 
takes account of the difference between P^ and P , the mean pres- 
sures inside and outside the bubble, but neglects the change in 
surface tension as the bubble oscillates, - see equation (2-17) • 
and is therefore not quite correct. 

14. E. Meyer and K. Tamm, Akustische Zeitschrift. 4. 14?, 1939. 
Available in English as Translation 109. David W. Taylor Model 
Basin, April 1943. 
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ing constant <5 , Two frequency ranges were Investigated, from 

1.5 to 6,5 kc, and from 2] to 30 kc. 

In the lower frequency range, a photoelectric method 

was used for determining the amplitude of oscillation of the 

bubble. A single air bubble was illuminated optically and the 

scattered light measured by a photoelectric cell. When sound 

was produced by an electromagnetic telephone the oscillation of 

the bubble varied as the frequency varied and the alternating 

EMF produced by the photocell varied correspondingly. Variation 

of the sound pressure with frequency in the absence of the bubble 

was determined and allowed for by separate measurements with a 

hydrophone. The bubble radius was determined visually with the 

aid of a microscope. The results gave for each bubble the fre- 

quency of maximum amplitude as well as the half-width of the 

resonance peak. 

For the higher frequency range, two methods were used, 

both employing an electrolytic method for producing the gas bubbles, 

and a microscope for measuring the radii. A visual optical method 

was employed to determine the frequency of maximum oscillation of 

a single bubble adhering to a small platinum electrode in water» 

This method could not be used to give a value for the relative 

half-width, cf , For more accurate work, a single bubble was 

caught on a small wax sphere fastened to a platinum thread 1 cm 

long and 1.5x10  mm thick between the poles of aielectromagnet 

A        When the bubble oscillated in a sound field, the ribbon moved 
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back and forth and in the magnetic field; the alternating EMF 

generated was then amplified to give a measure of the amplitude 

of oscillation of the bubble. The presence of numerous reson- 

ance peaks at different frequencies, even in the absence of the 

bubble, made it difficult to attach much importance to the change 

of EMF with frequency. However, from the variation of amplitude 

with bubble radius at a given frequency, it was found possible 

to determine both the radius of the bubble at resonance and the 

width of the resonant peak., 

The values of the resonant frequency for bubbles of air, 

hydrogen and oxygen in water were found to agree in all cases 

with equation (3-D within the experimental error, which on the 

average was somewhat less than 5 percent. For a resonant bubble 

of oxygen at 30 kc «-equals 1.06, while g is 1.01; the resonant 

frequency, in accordance with equation (2-19), should be some 3 

percent less than the value given by equation (3-D. This differ- 

ence is too small to be shown in Meyer and Tamm's work. For a 

resonant hydrogen bubble at 24 kc, however, <* is 1C18, while g 

is still 1.01, and the resonant frequency should be 9 percent 

less than the value computed for a wholly adiabatic oscillation. 

The observed frequencies for hydrogen bubbles at frequencies of 

27, 32, and 35 kc are only 3 to 4 percent less than the values 

given by equation (3-1)» In view of the inaccuracy of the data, 

this discrepancy is not serious. One may conclude that observa- 

♦ 
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tions definitely confirm the approximate validity of equation 

(3-1) for frequencies from several thousand cycles up to some 

20 kc or more, but that no adequate data are available to prove 

or disprove the more general equation (2*19). 

The determinations of cT , on the other hand, are in 

definite disagreement with the theory. As shown in Section 11, 

the effect of viscosity should be wholly negligible for resonant 

gas bubbles in water at frequencies of 30 kc or less. Hence, 

when g is unity, <5_ should be equal to the sum of a0A '  and 

PA. Meyer and Tamm express their results in terms of 0 , the 

logarithmic decrement per cycle of a freely resonating bubble. 

Since 0_ equals rr<J , the values of $T  are readily determined. 

9       The observed values of $    and the theoretical curves for oxygen 

and hydrogen bubbles in water are shown in Figure 6. In the re- 

gion 1.5 to 7 kc the values were found from air bubbles in water, 

which should in theory agree closely with the curve for 0« bubbles, 

At the higher frequencies, bubbles were produced electrolytically, 

and it is not stated by Meyer or Tamm whether the values of S 
r 

refer to oxygen or hydrogen bubbles. The two theoretical curves 

differ because of the much greater heat conductivity for hydrogen 

than for oxygen. 

The discrepancy between theory and observation is evi- 

dent at once from this figure. The observed values of S    are 

apparently much greater than can possibly be explained by heat 

conduction losses. The maximum value of £A is 0.115, which is 

7       the greatest contribution to 5    which heat-conduction losses can 
r 
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in theory provide, when surface tension effects are unimportant. 

Some other source of dissipation must probably be invoked to 

explain values of <5_ as great as 0,25. 

It is not certain whether this additional dissipation 

actually took place in and around the oscillating bubble, or 

whether it arose from the particular conditions of the experiments. 

The oscillation of the platinum thread in a magnetic field, for 

instance, may have produced considerable damping if the external 

resistance was not sufficiently large. On the other hand, it 

has been suggested by Pekeris1? that a thin layer of high viscos- 

ity may exist at the surface of an air bubble in water. A high 

superficial viscosity is suggested by the fact that air bubbles 

rise through water at the same rate as solid particles of the 

same buoyancy. If such a layer exists, it might conceivably give 

rise to the observed high values of the damping constant <J . 

Figure 6 is very similar to Figure 3 in the paper by 

Saneyosi-7, except that here the accurate values for (3/<*. have 

been used instead of the approximate formulae. A similar plot 

was published as Figure 4 by Pfriem , but his theoretical curve 

is drawn too high, owing to an oversight in the derivation of his 

equation (21). Pfriem discusses other possible sources of dis- 

sipation and concludes that they are all negligible, except 

possibly for the periodic condensation and evaporation of water 

15. C. L. Pekeris, The Rate of Rise and Diffusion of Air Bubbles 
In Water. NDRC Report No. C4-sr20-326, October 22, 194-2. 
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m 
on "condensation centers" throughout the volume of the bubble. 

The results of Meyer and Tamm on the value of 5~r for 

air bubbles In glycerine could be used to check the theory if 

the viscosity of glycerine were accurately known» Unfortunately, 

this quantity varies markedly with the temperature, the value of 

which is not given» The observed values of J  in this case vary 

from O.O83 at 2 kc to 0ull8 at 4.6 kc« When the effects of heat 

conduction and radiation damping are allowed for, these values 

are consistent with a value of 4 for /*•*, the coefficient of vis- 

cosity$ for glycerine this corresponds to a temperature of abo.'i 

80°F<, The range in frequency is not sufficient to demonstrate 

* whether or not the variation of £   , when heat-conduction and 
r 

A       radiation damping have been allowed for, is strictly proportional 

to the frequency as predicted by equation (2-23). 

" 

■ 
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IV. MANY BUBBLES OF THE SAME SIZE. 

When many bubbles are present in a sound field, two 

complexities arise. Firstly, interactions between bubbles may 

alter the amplitude of oscillation of each bubble. Secondly, 

the resultant sound field will be the sum of the sound waves 

emitted by all the bubbles, taking into account the phase of 

each wave. In certain simplified situations, however, an anal- 

ytical solution is possible» 

The simplest case arises when the distance between 

bubbles is always greater than the wave length of sound. In 

this situation a bubble will affect adjacent bubbles only in 

so far as it alters the value of the incident sound pressure 

p0 in their neighborhood, and thereby changes their amplitude 

of oscillation.  In addition,, there will be a large difference 

of phase between the waves from different bubbles, and on the 

average, the energy in the sound field may be found from the 

sum of the squares of amplitudes of the different waves. As a 

result, all questions of phase may be disregarded when the effects 

of different bubbles are combined, and all intensities may be 

added directly. 

If there are n "widely spaced" bubbles per cnß and if 

the scattering coefficient per bubble is cr , then the energy 
s 

scattered by each bubble will be cr I» where I Is the flux of 

energy in the incident sound beam, in ergs per cnr per second. 
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The total radiation scattered from a cubic centimeter will 

then be nor I, provided ncrs  is small compared to unityj the 

quantity n<r may be regarded as the scattering cross-section 

per unit volume. If the effect of absorption is also taken 

into account, the intensity of energy in the main beam will 

then decline according to the law 

I(x) « I(o)e-n^s+<ra)x  , (4.D 

provided that n(cr_+<£) is constant« It is assumed in this equa- 

tion that the beam is directed along the x axis, 

v Diffuse or multiply scattered radiation mayT of course, 

replace the sound energy in the direct beam.  In fact if no sound 

^       energy is absorbed the total flux of energy H must remain constant. 

For the flow of radiation through a scattering layer of thickness 

X a simple approximate solution  is available for I(x), the 

average at the point x of the radiation intensity in all directicis: 

| 17x7 = 2H(1 + 3.T)  , (4-2) 

I 2 

where -w- 

T * (n<r„dx . (4-3) s 

The radiation flows in the direction of increasing x, or decreasing 

I(x). If n<rg is constant, and cr is zero, the sound energy H 

16, Av S> Eddington. The Internal Constitution of Stars (Cam- 
bridge TJ. Press, 192o), p. 322. For a more accurate picture, the 
"equation of transfer" may be solved by successive approximations 
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which leaves the far side of the layer is approximately 

XJ -    TTÖ1       . (4-4) 
3# 

If n<rX is appreciable, the amount of radiation penetrating 

through the bubble layer by multiple scattering will be very 

much greater than that computed from the exponential relationship 

in equation (4-1). Hence, absorption provides a much more effect- 

ive sound screen than does scattering» 

The effect of bubbles on a sound field may also be 

computed in certain cases when the average distance between 

bubbles is much less than a wave length.  In this situation the 

£        sound waves emitted by adjacent bubbles will be in phase, and 

will interfere constructively. A small isolated group of bubbles 

crowded together in a sphere less than a wave length in radius 

will, for instance, scatter very much more sound than would be 

expected from a simple addition of intensities. 

\ Before the effects of closely spaced bubbles can be 

combined, it is necessary to examine whether the interaction be- 

tween such bubbles affects the validity of equations (2-25) and 

(2-27) for the scattering and absorption cross-sections. These 

cross-sections depend entirely on the amplitude of oscillation, 

which is proportional to the quantity A. The dependence of the 

amplitude of oscillation on the spacing between bubbles must be 

considered separately for non-resonant and for resonant bubbles. 

0 For frequencies far from resonance, the formulae for J 
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A developed In Section II should be valid even when the bubbles 

are fairly close together* At a distance of 5& from such a 

bubble, the time-dependent part of the external pressure will 

be closely equal to p •, the pressure in the incident sound wave. 

The kinetic and potential energies of another oscillating bubble 

placed at this point should b9 very nearly equal to the corres- 

ponding energies for an isolated bubble with the same amplitude 

of oscillation,, Hence, the oscillation of such a bubble should 

be largely unaffected by the presence of the other bubble % 

away* In fact for wave lengths greater than resonance, the 

amplitude of oscillation is constant no matter how closely spaced 

the bubbles may be. For wave lengths shorter than resonance, 

^ however, the kinetic energy of oscillation and the external pres- 

sure producing the oscillation will both be affected if the 

bubbles are too close«, The 'ormulae in Sections I and II should 

be accurate to within 10 to 20 percent, however, when the average 

distance between adjacent bubbles is equal to 5R. A mean separa- 

tion of JR between closest neighbors corresponds to a bubble den- 

sity of roughly 3 parts air in 100 parts water. 

In the case of resonant bubbles, another effect must be 

considered. The fluctuating external pressure in the neighborhood 

of a resonating bubble is so different from p », the pressure in 

the incident sound wave, that two neighboring bubbles may be ex- 

pected to have a large mutual interaction. In fact when N bubbles 

are gathered together in a cluster small compared to the wave 

fß> length, and no other bubbles are present, the radiative damping 
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constant for each is N times Its value for an isolated bubble, 

corresponding to the fact that for a source much smaller than 

the wave length the emitted energy is proportional to the square 

of the radiating surface. 

When a uniform distribution of bubbles is assumed, 

however, the contribution made by radiation damping to the value 

of ci    is unaffected by the close distance between two bubbles, 
r 

The effects produced by the different bubbles give rise to a 

refracted wave whose velocity may differ from the sound wave in 

an undisturbed medium.  If p is taken to be the pressure in 

the wave, resulting not only from the initial sound, but also 

from the superimposed wavelets emitted by the individual bubbles, 

then the difference in phase between p ' and A will be correctly 

given by the analysis in Section II and the radiation damping will 

be the same as for an isolated bubble. This corresponds to the 

fact, discussed below, that the total scattered energy is un- 

changed by the spacing between the bubbles. Thus, even for reson- 

ant bubbles the amplitude of oscillation for a given sound pressure 

p will be unaffected by the presence of the other bubbles within 

distances greater than some 5ft» provided we include In p the 

wavelets emitted by all the other bubbles, and provided the 

bubbles are distributed with random uniformity. 

Subject to all the limitations derived above, it is 

possible to compute the scattering by adding together the scattered 

M       waves produced by different bubbles. The resultant effect depends 
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on the density of bubbles as a function of position» The 

essential features of the problem will be treated if only two 

types of distribution are considered: first a random, uniform 

distribution; second a discontinuous change in the bubble den- 

sity, 

If the number of bubbles in each unit volume were 

exactly constant, no scattering of sound would appear, since 

there would be complete cancellation of the wavelets emitted 
r 

from different parts of the medium. In a random distribution, 

s however, statistical fluctuations of density occur, and these 

may scatter energy. The analysis is exactly analogous to the 

^        scattering of 'light by the atmosphere. Following fowler1?, one 

may calculate the density fluctuations to be expected in a given 

I volume, and determine the scattering from these, More simply 

one may compute a time average of the radiation scattered from 

a volume large compared to the wave length. As the different 

I bubbles move about, the relative phases of their scattered wave- 

lets will vary, and as a result constructive and destructive 

interference will be equally likely. The total scattered inten- 

sity is, therefore, the sum of the intensities of the individual 

waves; the total energy scattered per unit volume^will be noil, 

exactly as in the case where the bubbles were widely spaced. The 

17. R. H. Fowler, Statistical Mechanics. (Cambridge U. Press, 
^        1929), p. 154. 
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absorption of sound also follows the same formulae in both 

cases. 

When the density of bubbles changes discontinuously, 

sound is reflected from the interface. This is simply the fam- 

iliar case of reflection and refraction at the boundary of two 

homogeneous media, and may be treated by similar methods. The 

velocity of sound in bubbly water may be found either by the 

superposition of the direct and scattered sound waves, or by a 

consideration of the compressibility of the air-water mixture. 

The second method will be followed here because of its greater 

simplicity. 

In general, we have for c, the velocity of sound in a 

medium 

C
2 = &    , (4-5) 

dp 

which may be written 

e2 = dp/dt . (4-6) 
C   dp7dt 

The quantity p is given in equation (1-1). If the ex- 

pansion and contraction of a unit volume is considered. 

ft--fff ' (4-7) 

where V is the sum of V , the volume of water, or any liquid 

external to the bubbles, and V,, the volume of the bubbles. The 

average value of V is the relative amount of air present, by 

m volume, in the air-water mixture; this quantity, which will be 
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denoted by u, is given by the relationship 

u = n«4rR3 , (4-8) 

where n is the number of bubbles per cnß. The quantity P will 

be set equal to the density of the water, and u will be neglected 

compared to unity. The results should be valid for u <.03, cor- 

responding to a distance between bubbles of roughly 5R. 

If equations (1-14) and (1-20) are used, equation (4-6) 

gives .   . 
2 m      - ^pQ'e       m (4-9) 

The constant A is given by equation (2-18); since also c must 

equal c when n vanishes, we have 

c2 =  SoL -   •       (^-10) 

Equation (4-10) may also be written in the form 

c2 —!af 5—— •     (4-11) 

Then quantity a is equal to kR, or 2*R/A ; the value of a at 

adlabatlc resonance, denoted by aQ, is given In equation (1-36), 
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For frequencies far from resonance, the imaginary 

term in equation (4-11) may be neglected. For long wave-length 

radiation, a Is much greater than a, and 

c =     Co   . (4-12) 
(1 + 3*u/ga0

2)1/2 

-4 This result is independent of the bubble radius. Even for 10 

parts of air at atmospheric pressure per 1 part of water, c will 

be reduced to 62 percent of its value with no air when <*. and g 

x are unity. For air bubbles in water whose radii are less than 
-4 

10- cm, however, g, defined in equation (2-21), becomes important, 

% Equation (4-12) is valid only for values of u small compared to 
.- 

unity. A curve which shows c for all values of u for bubbles 
lO 

below resonance has been given by Wood;  his curve neglects the 

effect of surface tension, however. 

For sound of short wave-length, a /a is negligible and 

I 
c - 

(1 - 3u/a*) :ia72   • <«3) 

Equation (4-13) gives the perhaps unexpected result that when u 

is equal to a2/3, c is infinite, and for a greater amount of air, 

no sound waves can be present in the medium,, This effect may be 

traced back to the fact that a bubble bigger than resonant size 

has its greatest radius when the pressure is greatest; when there 

18, A. B, Wood, A Textbook of Sounq (Macmillan, 1941), p. 362. 
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are enough of such "bubbles their expansion more than offsets 

the compression of the water, and dp/dp is negative. For 

bubbles of twice the resonant size, with <* and g equal to 

unity, the critical value of u for which c is infinite is 

roughly 2x10" , corresponding to a distance between the bubbles 

some 30 times the bubble radius. When u becomes comparable with 

unity, equation (4-13) is no longer valid, since changes in den- 

sity become important, and in addition the amplitude of oscilla- 

tion is no longer given by the analysis in Section II. 

For normal incidence, the reflection coefficient r at 

an interface between two media of equal P but different c is 

equal to 

r -fa '  °2^ 
\°1 + C2> 

(4-14) 

Near resonance, however, equation (4-14) cannot be used»  If we 

write equation (4-10) in the form 

c2 

-§- * a + ib , (4-15) 
c 

and solve for f  and $ , the real and imaginary parts of c /c, 

then 

f2  = a + /a2 + b2 (4-16) 

$2 = -a + /a2 » b2 . (4-17) 
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The imaginary part of c /c may be used to derive 

equation (4-1). The reflection coefficient r for normal inci- 

dence *is given by 

, ÜgflJ+if  . (4-18) 
(l+t)2 + 52 

Equations (4-11) and (4-15) through (4-18) have been used 

to compute values of r as a function of «/<0 for different values 

of u, the volume of air per unit volume of air-water mixture. The 

results are plotted in Figure 7*    The values of <* have been com- 

puted for a frequency of 24 kc; for other frequencies of practical 

interest the curves will not be very different. The theoretical 

—        values of 5 used in plotting Figures 3-5 have been used to com- 

pute the values of r in Figure 7. 

The values of r for very small u are of doubtful sig- 
i 

nificance, especially for the larger bubbles, since the average 

spacing between bubbles becomes comparable with the wave length. 

(In such cases, however, the reflected energy is small compared 

to the scattered energy. In fact the energy scattered from a 

layer of thickness x will be equal to the reflected energy when 

no-ax equals r, or when 

x=AnO\3  , (4-19) 

for frequencies far from resonance. Thus if there is only one 

4        *r is the fraction of the incident energy which is reflected,, 
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bubble, on the average, In a cube of length A/4Tr , the scatter- 

ing from a layer of thickness > will just equal the reflection 

found from equation (4-14). It is only for very small bubbles, 

or great bubble densities, that the reflected energy-determined 

from equation (4-18) is Important, The values of r for large 

u are perhaps not precise, owing to the effects described above, 

but it is clear that the reflection coefficient is close to 
-2 unity when u is as great as 10 . 

It should be noted that if bubbles of all sizes are 

present, with radii both less and greater than the radius of 

resonance, the change of the sound velocity will be less than 

computed from equation (4-11). In addition, if the changes in 

bubble density are gradual, and extend over several wave lengths, 

the reflection will be substantially less than that computed 

from equation (4-18). 
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V, MANY BUBBLES OF DIFFERENT SIZES. 

When bubbles are present in abundance in water, there 

will usually be a wide dispersion of bubble sizes. It is, there- 

fore, of interest to determine the acoustical effects produced 

by such a distribution» 

The effect produced by resonant bubbles is enormously 

greater than that arising from bubbles of other sizes» For most 

purposes the total reflection., scattering, and absorption of 

sound will be obtained by integrating only over the resonance 

peak In each case. This procedure will be followed first for 

the absorption and scattering and then for the reflection pro- 

^       duced by closely spaced bubbles, 

Let the number of bubbles per cm-3 with a radius between 

R and R + dR be denoted by n(R)»dR.  If Sg and Se denote the 

total scattering and extinction cross-sections per cubic centi- 

meter, then from equation (2-17) and (2-18) we have 

. „[iqjuip  ,        „.„ 

h -') **! 
S -(n(R)'4irR2JdR/a . (5-2) 

unless n(R) is very much less for resonant bubbles than for those 
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of other sizes, the integrals will depend primarily on a 

narrow range of integration over the resonance peak. We may, 

therefore, take outside of the integral all the quantities 

which vary slowly in this region, giving them their value at 

resonance. Also, the quantity 3 in the denominator may be 

given its value at resonance. A subscript r will again be 

used to denote the value of any quantity at resonance. 

If we also make the substitution 

6J-C*>          R   -  R„ 

r                r 
cj- 9 

equations (5-D and (5-2) yield 

4rrR3 n(R  )    ( 
r      r      \ 

+ «0 
S    ■ s 

-CO 
dur 

4-2 + #r 

(+*> 

SeS ar )-. 
dur 

4w    + a r 

(5-3) 

(5-4) 

these integrals have been extended to infinity for simplicity; 

half of their value arises from the range from -ST  to +<3^, and 

the rest comes from values of u which are not much greater. The 

integrals are equal to It/231, and with this substitution Sg and 

S become _ 
e 2TT

2
R 

3n(R„) , _ 
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s*      s 
It is interesting to note that the total extinction cross- 

section is 

is simply 

section is independent of 5 . The absorption cross-section 

Sa = Sa -B, . (5-7) 

In a cubic centimeter of the water-air mixture, let u(R)dR be 

the total volume of air contributed by bubbles with radii be- 

tween R and R +dR. Then equations (5~5)  and (5-6) yield 

S = 
3iTu(R„) 

s   2ST 

S. = 
3nu(R ) 

(5-8) 

(5-9) 
e   2& 

Let us define u as equal to RußlJ, If u(R) were constant 
r r  r 

from R * OoSRy to R ~  1.5Rj., and zero outside this range, u^, 

would be the total volume of air per unit volume of the air- 

water mixture. The quantity u_ is the volume of resonant 

bubbles per cm^ per unit interval of log R. Equations (5-8) 

and (5-9) yield, finally 

S -52t- i (5-10) 
8 **& 

S. = 
3iru 

•  2a-R 
r r 

(5-lD 
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If the results of Meyer and Tamm  are used, <T_Rr is roughly 

constant for frequencies from 5 to 25 kc, and equal to 3.6x10"*-*$ 

a , on the other hand, equals 1,36x10 (g/a)  » 

When sound Is penetrating a medium with a particular 

value of SQ, the intensity will decay exponentially at the rate 

exp(-Sex)s For most purposes it is convenient to express this 

attenuation in terms of decibels per yard, a quantity which will 

be denoted by K 5 K will be used to denote that part of the 

attenuation which arises from scattering. Numerically equations 

(5-10) and (5-11) yield 

K = 5c2xl0^u   , (5-12) 
s        r  ' 

Ke = 1A-xio? /*\1/2 u,. . (5-13) 

At 24 kc, R equals 104x10 cm, a and g equal unity, and K is 

l'.OxlO'u . If the theoretical formula for S    is taken, Kg is 

reduced by a factor varying from about 2/3 at 5 kc to 1/3 at 

30 kc. Equation (5-13) for K is independent of any assumption 

about damping constants, however, and should be accurate. 

While for the calculation of attenuation, it is use- 

ful to express K directly in terms of db per yard, the scattered 

sound is most conveniently found from S , the scattering coeffi- s 

cient per unit volume. This same quantity has also been denoted 9 

19c San Diego Reverberation Group, Reverberation at 24 kct NDRC 
Report No. C4-sr30-401, November 23, 1942. The values of m given 
by the San Diego group are in terms of feet rather than yards. In 
equation (5-14) the right hand side must be divided by 3 if a com- 
parison is to be made with the numerical values given in the San 
Diego report«. 
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by m, and called the "volume scattering coefficient"»    Since 

e^3 is equal to 10"Ks/1°, Sg is equal to Ks(loge10)/10, and from 

equation (5-12) we have 

» « 8S ■ 1,2 x 10* Uy yard-1      . (5-14-) 

For some purposes it may "be useful to know the average 
2        2 

value of CL/TTR and crAvR  . This information makes it possible 

to pass from the total geometrical (or optical) cross-section in 

the line of sight to the total absorption and scattering of sound,, 

The total geometrical cross-section Sg per unit volume depends 

very much on the assumed distribution of bubble sizes. If u(R) 

is assumed constant over the range from Ry/2 to 3IL./2, then 

Sg = ^ loge3  . (5-15) 

If n(R) is assumed constant over the same range, 13/16, or 0.81, 

replaces the numerical constant % loge3$ or 0.82. If a much 

greater number of very small bubbles is assumed, S will be much 
D 

increased for a given u . If equations (5-10), (5-11), and (5-15) 

are taken for Sg, SQ, and S , the desired ratios become 

K * Tog? x a" " 4-2xl°2  • (5-17) g  AW6eJ   o 

provided that g and <x are equal to unity. Thus if the bubbles 
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present in a region have a total cross-section of one per unit 

area, corresponding to a diminution of a light beam "by a factor 

1/e in passing through the region, the acoustical absorption 

will be 4,2x 10 2 times as great, giv?.ng a total attenuation of 

30 db through the region. This result is valid, of course, only 

if the distribution of bubble sizes resembles at least approxi- 

mately the distribution used in deriving equation (5-15) e 

While the attenuation K may be interpreted directly in 

terms of observed quantities, K and S are not always directly 
s    s 

applicable to observational data, owing to the complerdties aris- 

ing from multiple scattering. In the general case, an exact solu- 

tion depends on the equation of radiative transfer, which has 

been extensively studied in the astronomical literature. 

In two special cases, however, S has a direct obser- 

vational significance. On the one hand, if the total attenuation 

throughout the bubble-filled region is small, that is if K X is 

small, where X is the thickness of the region, then S X or mX 

will be the fraction of the incident radiation which is scattered. 

On the other hand, if the scattering coefficient Sg is 

very much less than the corresponding attenuation or extinction 

coefficient Sa (and K„ is correspondingly less than K ) multiple 
6 9 0 

scattering becomes unimportant in most situations, and the total 

scattered radiation may again be computed. In a layer such that 

X- and 1C are constant, the incident sound at a distance x Into 
e    s 

ä       the layer will equal I exp(-S_x), where I is the intensity inci- 

'2 

2 
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dent on the layer, and the sound scattered from each thickness 

dx will be SgI exp(-SQx)dx. The sound coming back out of the 

layer will also be absorbed, and scattered, but if the absorp- 

tion is very great compared to the scattering, the sound I 

scattered straight back will be, per unit solid angle 

I = (snIe-
2Se* dx , (5-18) 

s     )   s    Air 

integrated over the thickness of the layer. The factor 2 in the 

exponent represents the fact that the sound is absorbed on the 

way back out as well as on the way in„ If the total attenuation 

through the layer is large, then the integral may be taken from. 

zero to infinity, and 

h^^^h-   ' (*-19) 

hence the energy scattered directly backwards is equal to what 

would be found if a fraction Kg/4Ke of the incident sound energy 

were scattered uniformly in all backward directions; i.e., over 

a solid angle of 2TT. The ratio K /4K is equal to a /4J . 
3        9 T       T 

Thus at 24 kc between 1 and 2 percent of the incident energy will 

be scattered backwards, if Meyer and Tamm's** results are used. 

For comparison with equation (5-13) the absorption 

arising from bubbles other than those near resonance should be 

considered. In the general case the exact determination of S. s 

and S_ is dependent on the values of v   and cr   for all bubble 
ex S       c* 
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sizes, and distributions can always be conceived for which 

bubbles other than resonance will be of primary importance. 

For bubbles greater than resonance the effects are 

fairly simple. The scattering cross-section i3 simply equal 

to four times the geometrical or optical cross-section, and 

the absorption cross-section, as is evident from Figure 5» is 

quite small. Such bubbles may be the primary source of scatter- 

ing if the relative number of resonant bubbles is very small, 

but are less likely to be the chief source of absorption. 

Bubbles smaller than the resonant size, on the other 

hand, have an exceedingly small scattering cross-section but 

may contribute to the absorption. • The scattering cross-section 

*J or varies as the square of the volume when cJ/u> is small, so that 

the larger bubbles have very much greater weight in determining 

S than do the smaller ones. The absorption cross-section of 

very small bubbles is very much greater than the scattering cross- 

section, however, and under some situations the absorption from 

such bubbles may be important. 

There are two situations in which more detailed evalua- 

tion of the absorption is perhaps desirable, first for bubbles 

somewhat below the resonant size, secondly for very small micro- 

scoplc bubbles. It is evident from Figure 5 that c /TrRr  at 6 

and 24 kc is relatively constant with frequency fcr a certain 

range of w/o> below resonance. This arises from the increase of o 
(3 with decreasing frequency, which helps to offset the increase 
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of the denominator in eauation (2-27). This range of w/w., 

when Q^/^cR2 changes relatively slowly, has been called the 
2 

"knee" of the absorption-frequency curve by Willis , who 

attributes most of the absorption to this region, on the 

ground that the resonance peak, while high, is too narrow to 

contribute appreciably to the absorption. 

Computation shows that this knee is somewhat less 

important than the resonance region, if the same optical cross- 

section per unit radius interval is assumed for the bubbles in 
p 

each region. In Figure 5 the curve for 6 kc shows that <rAR 
a 

has a "knee" at a value of roughly 10, for w/u) between 0.1 and *      o 

0.7. The resonance peak, on the other hand, shows a value of 

4x10^ for cr/nrR , 400 times the value at the "knee", while the 
a   * 7 

relative half-width of the peak is about 0.04, roughly one- 

fifteenth as wide as the "knee"$ the total contribution of the 

resonance peak is therefore 30 times that of the knee if the 

optical cross-section of the bubbles in an interval dR,or R2n(R), 

is roughly the same in both regions. Roughly the same conclusion 

holds at 24 kc, since the resonant peak contributes the same 

amount as at 6 kc; the "knee", with roughly twice as great a 

value of <r AB as at 6 kc, but extending over only one-half as 

great a range of <*>A>0, also makes roughly the same contribution 

to SÄ as before. One may conclude that for a given geometrical 

cross-section per unit radius interval, bubbles at the "knee" of 

the absorption-frequency curve contribute about 1/20 to 1/40 as 

much as the resonance peak. 
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For sufficiently small bubbles, viscosity may be more 

important than heat conduction. If surface tension were negli- 

gible so that g could be set equal to unity in equation (2-20) 

for cJp, then <r&  would be proportional to R^ when viscosity is 

dominant, and for a given frequency the attenuation v/ould be 

proportional to the volume of air present, and independent of the 

distribution of bubble sizes. This was the result found by 

Epstein.10 

For air bubbles in water at a pressure of one atmosphere, 

g cannot be neglected when viscosity is important, however, since 

v in this case g equals 2 when R equals KT^cm, one-third of the 

radius below which viscosity becomes important. For smaller 

Values of R, g is roughly proportional to 1/R. The absorption 
A. P 

cross-section 'J"a is proportional to 1/tJp , and since <^r varies 

as g, the presence of surface tension introduces an extra factor 

I R^ into o^, and materially reduces the absorption produced by 

microscopic bubbles. If equations (1-30), (2-20), and (1-29) are 

j substituted into equation (2-27), the total absorption cross- 

section per unit volume produced by very small bubbles becomes 

B = V°rY ( nisi® ,        (5-20) 

integrated over the region in which the absorption is primarily 

the result of viscosity. It may be useful to express this 

result in terms of Kg, the absorption in db per yard. For air 

^       bubbles in water at atmospheric pressure, and for a frequency 

of 24 kc, #» equals \   and equation (5-20) may be written 
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K = lo8 x  10* u  , (5.21) 

g 

2 
where the bar denotes a harmonic mean of g , and u is the total 

relative volume of the bubbles in question» 

It should be pointed out that these formulae for micro- 

scopic bubbles must presumably be modified when bubbles are ad- 

hering to solid particles. While the amplitude of oscillation 

and the viscous dissipation are probably not much affected by 

the presence of a rigid surface, the Influence of surface tension 

may be completely changed. For a bubble caught in a cup-like 

depression in a dust particle for instance, surface tension would 

have much less effect in increasing Pj, the average pressure in- 

side the bubble, than it would for an isolated bubble; as a 

result g might be substantially less than the value found from 

equation (2-21). It is not impossible that if such small bubbles 

are maintained in this way, their contribution to K^  should be 

computed from equation (5-21) with (p set equal to unity. 

The results developed so far in this Section are appli- 

cable to the scattering and absorption produced by a uniform dis- 

tribution of bubbles, either closely or widely spaced. For high 

bubble densities, however, there are also reflection effects to 

be taken into account whenever the density of bubbles changes 

appreciably in a region small compared to the wave length. If 

the bubbles are predominantly smaller or larger than resonance, 
*> 
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the analysis in Section IV may be applied» In the more import- 

ant case, however, the chief effect arises from bubbles in the 

neighborhood of resonance. 

The change of velocity may as before be computed from 

the total change in volume in a unit cube of air-water mixture. 

In equation (4-10) the term in the denominator must be inte- 

grated over a distribution of bubble sizes. The integration 

over the resonant peak contributes nothing to the real part of 

this integrrl, since positive and negative values of the integral 

are equally likely if Rn(R) is essentially constant over the 

resonance peak. The imaginary part does not vanish, however, 

and it is readily shown that 
2 

^J- = l - 3ytl^r  , (5-22) 
c2     2ap

2 

where u equals Ru(R ) as before, 
r r 

The imaginary part of the wave velocity gives the same 

attenuation in db per kiloyard as was found in equation (5-13). 

If equations (4-15) to (4-18) are used to determine the reflec- 

tion coefficient r, we have, 

m A + A*(2.5sio\.)*- A~9   (M3) 

A + A + (2,5xl04ur)
2 + A 

where the value of a^,, or a (gA)  » at atmospheric pressure 

has been determined from equation (1-36), with a  and g both set 
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equal to unity. When Uj. is 10"*^ or less, equation (5-23) becomes 

r - (6.2 x lcßiO2  . (5-24) 

When u is less than 10""?, the reflection coefficient given by 

this equation is small, and less than the scattered radiation, 

whose value then depends on the ratio ar/4$r„ For greater values 

of u , a large fraction of the incident energy may be reflected 

even when Kg is much less than K . 

Bubbles whose radii are far from the resonant value 

may also contribute to the reflection, of course. For bubbles 

whose radii are below the resonant radius R but greater than 
r 

2T/P0 (10 cm for air bubbles in water at atmospheric pressure) 

the reflection coefficient is independent of R, as may be seen 

from Figure 7» and equations (4-12) ant (4-14) may be applied 

directly to determine r in terms of u, the total volume of all 

such bubbles per cm*. For bubbles of radii less than 2T/P0, or 

much greater than the resonant radii R , the denominator in 

equations (4-12) or (4-13) must be integrated over the different 

bubble sizes; and the resulting value of r, found by use of equa- 

tion (4-15), will depend on the detailed distribution of bubble 

sizes. 
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